

1 Element 14 Road Test

1.1 Test plan (How)

Elaborate testing can have many stages to effectively ship the source at the development stages Software-in-loop, Hardware-in-loop, But we will be sticking to the black box testing to have greater insights on usability and KPIs proportional to quality thereby ignoring Technical aspects like Software architecture etc. from Tester perspective

1.1.1 Test process

1.1.1.1 DAQ Process

The data acquisition process is taken care using Can Edge2 to log the CAN (NMEA) data to SD cards as mdf4 format. High speed CAN signal streams are recorded to SD cards with timestamps in industrial standard mdf4 format.

1.1.1.2 Signal Analysis

The signals recorded in the industrial grade SD card is imported and analysed using the asammdf tool which is a fast parser and editor for ASAM (Association for Standardization of Automation and Measuring Systems) MDF (Measurement Data Format)

1.1.1.3 V&V Process

Once the Scenarios are defined in Test Procedure, data will be collected for those Tests for visualization and automation testing, the test data will be tested using test script (in python using asammdf 7.1.0) for a test case specification to make sure that the outcomes are expected. Testing automation is an integral part of regression testing.

1.1.2 Resources required

System under Test - Xsens Position and Orientation Sensing GNSS/INS Development Kit (MTi-680-DK)

CAN edge2 - CAN data logger for measurement recording & other connectors needed

Industrial SD card – SD card supported with CAN edge2 (up to 32 GB)

2

1.2 Test procedure (what)

1.2.1 Testing Timestamp

Timestamp should be increased in such a way that the Δt should be almost constant

1.2.2 Testing Position & Velocity

Sample test case illustrating the scenario,

Test Case ID	Test Description	Steps to be Executed	Expected Result	Metrics Tested	Pass/Fail
	Ride on a 1 km straight road with constant speed		delta position & delta velocity	$\Delta Px(t) < \Delta Px(t+1),$	
		start the vehicle	will be steadily increasing	$\Delta Vx(t) < \Delta Vx(t+1)$	
		increase the speed			
		to 30kmph before	delta position & delta velocity	$\Delta Px(t) < \Delta Px(t+1),$	
		300m	will be steadily increasing	$\Delta V(t) < \Delta Vx(t+1)$	
рт		maintain the same			
RT- 1		speed from 300m	delta position & delta velocity	$\Delta Px(t) \simeq \Delta Px(t+1),$	
		till 700m	will become almost constant	$\Delta Vx(t) \simeq \Delta Vx(t+1)$	
		decrease the speed			
		to 30kmph after	delta position & delta velocity	$\Delta Px(t) > \Delta Px(t+1),$	
		700m	will be steadily decreasing	$\Delta Vx(t) > \Delta Vx(n+1)$	
			delta position & delta velocity	$\Delta Px(t), \Delta Px(t+1) \simeq 0,$	
		stop the vehicle	will become almost zero	$\Delta Vx(t), \Delta Vx(t+1) \simeq 0$	

1.2.3 Testing Velocity & Pitch

Sample test case illustrating the scenario,

Test Case ID	Test Description	Steps to be Executed	Expected Result	Metrics Tested	Pass/Fail
RT-2	Ride on a 1 km straight road with bridge / flyover	drive up the flyover at 300m drive on the same flyover from 300m till 700m drive down the flyover at 700m	delta velocity will be steadily increasing, Pitch(Oz) will be increasing delta position & delta velocity will become almost constant, Pitch(Oz) will be constant Pitch(Oz) will be decreasing	$\begin{array}{l} \Delta Px(t) \simeq \Delta Px(t+1),\\ \Delta Vx(t) < \Delta Vx(t+1),\\ Oz(t) < Oz(t+1),\\ \Delta Pz \mbox{ and } \Delta Vz \\ \end{array}$ $\begin{array}{l} \Delta Px(t) \simeq \Delta Px(t+1),\\ \Delta Vx(t) \simeq \Delta Vx(t+1),\\ Oz(t) \simeq 0 \\ Oz(t) > Oz(t+1) \\ \Delta Pz \mbox{ and } \Delta Vz \end{array}$	

1.2.4 Testing Roll & Yaw

Sample test case illustrating the scenario,

Test Case ID	Test Description	Steps to be Executed	Expected Result	Metrics Tested	Pass/Fail
RT-	Ride on a 1 km curved road	turn right at 200m	change in yaw(Ox) based on right turn and change in roll(Oy) because of leaning	Ox increases and Oy decreases, ΔPy and ΔVy	
3		turn left at 400m	change in yaw(Ox) based on left turn and change in roll(Oy) because of leaning	Ox decreases and Oy increases, ΔPy and ΔVy	