

ETTC 2025 – European Test & Telemetry Conference

Event Based Distributed Tracing – Observability Ecosystem Design

 Sathiyanarayanan Palani1, Sanjay Tiwari2

1: Intel SRR4, Intel Technology India, Bellandur, Bengaluru, Karnataka
2: Intel AMR, US

Abstract: In the field of Semiconductor Product
Development & Testing, Telemetry methodology plays a
significant role in collecting data during test execution on
hundreds of platforms, for holistic quantization of design
level improvements. So, data collection tools &
methodology must support not only three pillars of
observability (Logs, Traces & Metrics), but also more
custom data types like Test Sessions & File IO Objects.

The data models involved in the Framework, is designed
to get more insights from lesser data to ensure low latency
data transfer rates. while workflow collector built based
on the principles of Open Telemetry, focuses to solve
problems involved in Electronic / Semiconductor testing
tasks, rather than focusing on Microservice stacks.

The components / Building Blocks involved in the data
collection pipeline, has minimal dependencies on external
tools, hence business logics can be altered as per need. It
creates an advantage over OTLP, where certain
components like fluentd are rigid executables that stick to
standards.

Keywords: Event Based Distributed Tracing (EBDT),
Workflow Collector, Open Telemetry (OTLP)

1. Data Model Design

The framework is implemented with support for logs,
metrics & traces data as the primitive data models, which
contains specific data describing the nature of execution.
In addition to that, two more custom data models have
been introduced for efficient workflow collection, termed
as session & object.

Rules: Unique names of all these data models should not
have (.) or (/) slash in it.

1.1 Session:

 Every session should have unique ID and an optional

configuration dictionary that defines the session.
 It can access several unique metrics, trace, log & pin

attributes.

1.2 Object:

 Pins an Object (file / folder) with parent class info &

timestamp (UTC). Folder will be stored as zip,
storage size of both limited to 100 MB per object.

1.3 Log:

 Logs a statement under one of the five categories

(DEBUG, INFO, WARNING, ERROR, CRITICAL)
with parent class info and timestamp (UTC).

1.4 Metric:

 A meter child class can be defined by the user with

the list of functions to be invoked, recurring at a
periodic interval in a separate process.

1.5 Trace:

 Every Trace should have a unique trace id, and trace

can be used as a sub attribute of session or another
parent trace.

2. Building Blocks

2.1 Collector

 EBDT-Client

The Collector Library is used for defining the
workflow of the test script, that streams data model
packets to Service API at runtime.

 EBDT-Service

Service API accepts Data Model Packets to store
them. Additionally, Packets will be streamed, only if D2C
mode of the platform is Enabled before the start of the test
session.

2.2 Dashboard

 EBDT-File Server

File Server API listens for files as bytes, to store it on
the server & serve it back to users during On-click
download events initiated from Dashboard.

 EBDT-Dash

Web UI developed with Dash Framework, where one
can search the test sessions based on platforms of interest
& Execution Date, with drilldowns to each of the unique
session pages.

ETTC 2025 – European Test & Telemetry Conference

2.3 Panel

 EBDT-Panel

Tkinter based Desktop app facilitates users to control
the functions of Service by manipulating D2C mode of
the platform. Additionally, Same app can be used to
upload new test run artifacts that is executed with disabled
D2C mode as well as to open the session page of
uploaded artifacts.

3. EBDT-Client Design

3.1 Traces

 Traces records the start & end time of code
snippet execution within a trace context, along with the
meta data of the trace.

 Usage

import time

from ebdt.traces import tracer

with tracer(‘tracer-example’) as trace:

 time.sleep(60)

 Schema

type : _trace

meta.pf : platform name

meta.run : trace name

meta.sn_st : trace start time

meta.sn_et : trace end time

3.2 Logs

Each Logging statements attributed to one among
the five categories will record the data locally as well as
in the cloud during the run based on D2C Mode.

 Usage

from ebdt.logs import logger

With logger(‘logger-example’) as log:

 log.debug(‘Hello World’)

 log.info(‘Hello World’)

 log.warning(‘Hello World’)

 log.error(‘Hello World’)

 log.critical(‘Hello World’)

 Schema

type : _log
log.lvl :

one of (
DEBUG /
INFO /
WARNING /
ERROR /
CRITICAL)

log.msg : user statement
meta.run : parent session / trace name
ts : timestamp (UTC)

Fig. 1. Architecture of the Observability Ecosystem

ETTC 2025 – European Test & Telemetry Conference

3.3 Metrics

When a Meter is started, class methods are passed in

as channels with an interval specified in seconds for
recurring channel calls in an individual process.

 Usage

import time
from datetime import datetime, timezone
from ebdt.metrics import meter

class Time(meter) :

 def M_hour(self) :
 return datetime.now(timezone.utc).hour

 def M_minute(self) :
 return datetime.now(timezone.utc).minute

 def M_second(self) :
 return datetime.now(timezone.utc).second

with Time(‘meter-example’) as metric:
 metric.open(

channels=[
‘M_hour’,
‘M_minute’,
‘M_second’], interval=10)

 time.sleep(60)

 Schema

type : _metric

meta.pf : platform name

meta.run : metric name

meta.sn_st : meter start time

meta.sn_et : meter end time

3.4 Objects

Objects represent file System IO objects like
uploaded file / folder in the form of meta data, that
contains path of the file to be uploaded in the Virtual File
System, managed by EBDT-file server, within listener
service.

 Usage

import time
from ebdt.objs import uploader
with uploader(‘uploader-example’) as obj :
 obj.file(

desc=’example readme file uploaded’,
path= ‘examples/README.md’)

 obj.folder(
desc=’example folder uploaded as zip’,
path=’examples/chunks_test/

 Schema

type : _obj

meta.run : parent session / trace name

obj.desc : description of the attachment

obj.path : Attachment file path in VFS

ts : timestamp (UTC)

3.5 Session

Session is the root trace that also records the pass /
fail status of the run, with uncaught errors if any, as well
as the platform info where the exécution is triggered and
the unique session name with start & end time of the
session.

 Psuedo Code

 Schema

type : _session

conf : info as dict from user at the start of the session

meta.run : unique name of the session

meta.pf : platform where the session is executed

meta.sn_st : start_time of the session

meta.sn_et : end time of the session

meta.sts : status of the run (success / failure)

meta.err : populated with uncaught errors, if any

ETTC 2025 – European Test & Telemetry Conference

4. Examples

 Passing Script

Fig. 2. Passing Script Example

 Passing Output

Fig. 3. Passing Script Output

Note :

The tick at the end of each line signifies that the data
model is stored or streamed based on the D2C mode set in
the platform.

 Failing Script

Fig. 4. Failing Script Example

 Failing Output

Fig. 5. Failing Script Output

ETTC 2025 – European Test & Telemetry Conference

5. EBDT-Dash Design

5.1 Home Page

 You can edit platform list & date range to
compare test sessions from different platforms during
different time frames, click refresh to update the Gantt
chart visualization based on selected inputs. Sessions in
green color are passed sessions & those in red are failed
ones. Zoom in to interested session and click on it to
navigate to the session page.

Fig. 6. Home page

5.2 Session Page

 Session traces with their respective runtimes will
be presented in hierarchical format in the left pane. With
the conf file that is passed by the user at the start of the
session, in the right pane.

Fig. 7. Confs page with traces in left pane

 Other details like logs and metrics can be found, by
clicking on the Logs and metrics section, as shown in the
page.

Fig. 8. Logs page with traces in left pane

 Log Lines can be selected based on categories to
filter them, for convenience during troubleshooting. Also,
the download links specified in File type log lines can be
used for downloading the files from the test script.

Fig. 9. Metrics page with traces in left pane

5.3 Failed Test Runs

Fig. 10. Confs page with traces in left pane (failing case)

Fig. 11. Logs page with traces in left pane (failing case)

Fig. 12. Metrics page with traces in left pane (failing case)

6. EBDT-Panel & EBDT-Service

 Panel can be used to enable or disable D2C mode
of the running service.

Fig. 13. EBDT – Panel user interface usage instruction

ETTC 2025 – European Test & Telemetry Conference

7. Conclusion & Prospects

 The framework, methodology & suit of tools
developed, makes data pipeline intact & debugging
easy for the platform engineers, via dash web UI,
thereby improving the pace of platform development
& test execution.

 Trace durations-based aggregation across different
platforms can be done for plotting gaussian
distribution curve to implement outlier detections.

 Several ETL-runners can be deployed using
ap_schedulers (i.e) cron jobs for processing the trace
durations / log contents / files uploaded, based on
specific needs to create static html reports using jinja
2 template engine to host in nginx server and send the
links in mail channels.

 LLM based Log Analysers, File Analysers for
summarization, etc can also be implemented based on
need.

8. Acknowledgement

I’d like to acknowledge the time & energy spent by
Sanjay Tiwari in providing valuable inputs, that have
shaped the requirements of the project.

 9. References

[1] Muhammed Usman, Simone Ferlin, Anna Brunstrom,
Javid Taheri: "A Survey on observability of Distributed
Edge & Container Based Microservices ", IEEE Access,
2022.

[2] Oleh V. Talaver, Tetiana A. Vakaliuk: "Telemetry to
solve dynamic analysis of a distributed system", Journal
of Edge Computing, 2024.

10. Glossary

EBDT: Event Based Distributed Tracing

OTLP: Open Telemetry Project

Fig. 14. System Design of the Observability
Ecosystem with future advancements included

